
Multithreading in Java 

Multithreading in Java is a process of executing multiple threads simultaneously. 

A thread is a lightweight sub-process, the smallest unit of processing. 
Multiprocessing and multithreading, both are used to achieve multitasking. 

However, we use multithreading than multiprocessing because threads use a shared 
memory area. They don't allocate separate memory area so saves memory, and 

context-switching between the threads takes less time than process. 

Java Multithreading is mostly used in games, animation, etc. 

Advantages of Java Multithreading 

1) It doesn't block the user because threads are independent and you can 
perform multiple operations at the same time. 

2) You can perform many operations together, so it saves time. 

3) Threads are independent, so it doesn't affect other threads if an exception 
occurs in a single thread. 

Multitasking 

Multitasking is a process of executing multiple tasks simultaneously. We use 
multitasking to utilize the CPU. Multitasking can be achieved in two ways: 

o Process-based Multitasking (Multiprocessing) 

o Thread-based Multitasking (Multithreading) 

1) Process-based Multitasking (Multiprocessing) 

o Each process has an address in memory. In other words, each process 

allocates a separate memory area. 

o A process is heavyweight. 

o Cost of communication between the process is high. 

o Switching from one process to another requires some time for saving and 

loading registers, memory maps, updating lists, etc. 

2) Thread-based Multitasking (Multithreading) 

o Threads share the same address space. 

o A thread is lightweight. 

o Cost of communication between the thread is low. 

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/register-memory


What is Thread in java 

A thread is a lightweight subprocess, the smallest unit of processing. It is a separate 
path of execution. 

Threads are independent. If there occurs exception in one thread, it doesn't affect 
other threads. It uses a shared memory area. 

 

 

As shown in the above figure, a thread is executed inside the process. There is 

context-switching between the threads. There can be multiple processes inside 

the OS, and one process can have multiple threads. 

Note: At a time one thread is executed only 

 

https://www.javatpoint.com/os-tutorial


Java Thread class 

Java provides Thread class to achieve thread programming. Thread class 
provides constructors and methods to create and perform operations on a thread. 
Thread class extends Object class and implements Runnable interface. 

Life Cycle of a Thread 

A thread goes through various stages in its life cycle. For example, a thread is born, 
started, runs, and then dies. The following diagram shows the complete life cycle of 
a thread 

 

 

 

 

Following are the stages of the life cycle − 

• New − A new thread begins its life cycle in the new state. It remains in this 
state until the program starts the thread. It is also referred to as a born thread. 

• Runnable − After a newly born thread is started, the thread becomes runnable. 
A thread in this state is considered to be executing its task. 

• Waiting − Sometimes, a thread transitions to the waiting state while the thread 
waits for another thread to perform a task. A thread transitions back to the 
runnable state only when another thread signals the waiting thread to continue 
executing. 

• Timed Waiting − A runnable thread can enter the timed waiting state for a 
specified interval of time. A thread in this state transitions back to the runnable 
state when that time interval expires or when the event it is waiting for occurs. 

• Terminated (Dead) − A runnable thread enters the terminated state when it 
completes its task or otherwise terminates. 

https://www.javatpoint.com/java-constructor
https://www.javatpoint.com/object-class


Java Thread Methods 

 

S.N. Modifier and Type Method Description 

1) void start() It is used to start the execution of the thread. 

2) void run() It is used to do an action for a thread. 

3) static void sleep() It sleeps a thread for the specified amount of time. 

4) static Thread currentThread() It returns a reference to the currently executing thread 

 object. 

https://www.javatpoint.com/java-thread-start-method
https://www.javatpoint.com/java-thread-run-method
https://www.javatpoint.com/java-thread-sleep-method
https://www.javatpoint.com/java-thread-currentthread-method

